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Abstract

Expression of the CYP11A1 (SCC) genes, which encode the enzyme important for the ®rst step of steroid biosynthesis, occurs

in the adrenal gland and gonads, and is stimulated by cAMP. Transfection of serial deletions of the SCC promoter, which drives
reporter gene expression, showed that a minimal promoter containing only the TATA box could direct cAMP-dependent
transcription. Transcription factor SF1, which binds to a site next to the TATA box, can stimulate basal transcription but not

cAMP response, either in adrenal cell lines or in COS-1 co-transfected with the SF1 expression plasmid. These data lead to the
conclusion that the minimal promoter containing only the TATA box can drive cell type-speci®c, cAMP-dependent
transcription. Additional experiments replacing the TATA sequence of SCC with other TATA sequences suggested that the

TATA sequence itself is important for this cAMP-dependent transcription. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The ®rst and rate-limiting step for the synthesis of
steroid hormones is the conversion of cholesterol into
pregnenolone. This step is catalyzed by a mitochon-
drial electron transport system consisting of ferredoxin
reductase, ferredoxin, and cytochrome P450scc (choles-
terol side-chain cleavage enzyme) [1,2]. This reaction is
regulated in a tissue-speci®c and hormonally regulated
fashion [3]. The expression of both ferredoxin and
P450scc is regulated by peptide hormones using cAMP
as an intracellular messenger [4], while the level of fer-

redoxin reductase remains unchanged after stimulation
[5]. Only steroidogenic tissues, including adrenal,
gonad, placenta, and some parts of brain contain
P450scc [6]. Ferredoxin has a wider tissue distribution;
it is also found in the kidney and liver in addition to
the above steroidogenic tissues.

Regulation of P450scc and ferredoxin genes is im-
portant for the maintenance of steroid secretion and
many physiological processes. Regulatory elements at
the 5 '-¯anking region of the genes have been dissected
[7,8]. For the ferredoxin gene, controlling elements are
located close to the basal promoter [9,10]. Besides the
TATA box, two Sp1 sites play an important role in
gene transcription [11]. The regulation pattern for the
CYP11A1 (SCC) gene, which encodes P450scc, is more
complex. Both upstream and proximal elements con-
trolling tissue-speci®c transcriptional enhancement
have been identi®ed [12,13]. There are also other el-
ements required for placental and neural speci®c gene
expression [14,15]. The steroidogenic cell-speci®c tran-
scription factor SF1 (also termed Ad4BP) [16±18] and
the common transcription factor Sp1 [19] plus CREB
[20] have been identi®ed to function in cAMP-depen-
dent transcription of the CYP11A1 gene.
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Both CYP11A1 and ferredoxin genes are stimulated
by cAMP at the transcriptional level through a delayed
time course. It usually requires many hours for the re-
sponse to take place and is thought to be a secondary
e�ect requiring synthesis of intermediate proteins [3].
Previously we have shown that while the upstream
cAMP-responsive sequence of the human SCC gene
may need new protein synthesis for the cAMP re-
sponse, the proximal region can respond to cAMP
quickly using constitutively expressed proteins [21].
Important factors governing cAMP-dependent tran-
scription of the CYP11A1 gene have been identi®ed to
be SF1 [18], CREB [20], and Sp1 [19]. However the
mode of action of these factors in transcription has
not been characterized. In this report we showed that
CYP11A1 promoter contains TATA sequences that
control tissue-speci®c and cAMP-dependent transcrip-
tion of the reporter gene. Other transcription factors
appear to play only an auxiliary role to enhance the
e�ect of the TATA box.

2. Materials and methods

2.1. Cell culture

Y1 [22], and COS-1 [23] cell lines were maintained
in culture as described previously. The H295 [24] cells
were grown in DMEM/F12 medium supplemented
with 10% fetal calf serum, 100 m/ml penicillin, 100 mg/
ml streptomycin and 2.4 g/l sodium bicarbonate.

2.2. Oligonucleotides

Sequences of SCC-117/-94, CAT 27mer, and globin
23mer were reported before [25]. Sequences of other
oligos used in this report are as follows:

SCC-76/-52,
TCGACAGGACGTGAACATTTTATCAGCTTG
SCC-60/-37,
TCGACATCAGCTTCTGGTATGGCCTTGAG
SCC-55/-29,
TCGACTTCTGGTATGGCCTTGAGCTGGTAG
SCC-36/-18, TCGACTGGTAGTTATAATCTTGG
SCC-13/-35, CAGGGCCAAGATTATAACTACCA
-39/-13 RSV,
GAGCTGGTAGTATTTAACTTGGCCCTG
-13/-39 RSV,
CAGGGCCAAGTTAAATACTACCAGCTC
CRE sense,
CTAGACCGGCTGACGTCATCAAGCT
CRE antisense,
CTAGAGCTTGATGACGTCAGCCGGT

2.3. Plasmid construction

Expression plasmids for SF1 and the catalytic subu-
nit of protein kinase A [26] are gifts of Keith Parker
and Michael Uller, respectively. Oligonucleotides SCC-
117/-94, -76/-52, -60/-37, -55/-29, or -36/-18 were
paired with CAT27mer in a polymerase chain reaction
(PCR) using pSCC145 as a template. The PCR pro-
ducts were digested with XbaI at one end before inser-
tion into the XbaI/SmaI-digested PUC13CAT vector.
The inserts of the resulting plasmids, pSCC34, 55, 60,
76, and 117, were sequenced entirely to ensure their
sequence and orientation.

2.4. PCR mutagenesis

Two step PCR mutagenesis from pSCC145 was per-
formed as described before [27]. The end primers for
the PCR reactions were -117/-94 and CAT27mer. The
mutagenesis primers were -39/-13RSV and -13/-
39RSV. The resulting PCR product was digested with
XbaI at one end and inserted into XbaI/SmaI digested
pUC13CAT to create p117RSV. Sequencing was per-
formed to con®rm the validity of the entire ampli®ed
region.

2.5. Assay of transfection

E�ector, reporter, and internal control plasmids
were transfected into cell lines using the calcium phos-
phate precipitation method [28]. Two days after trans-
fection, cells were treated with 40 nM forskolin or
1 mM 8-Br-cAMP for 24 h before they were harvested.
Gene expression was analyzed by CAT assay or direct
RNA analysis by primer extension using established
methods [9,28]. Gel mobility shift assay procedures
were described before [25].

3. Results

3.1. Dissection of the CYP11A1 promoter

Since cAMP-dependent transcription appears to
depend on the promoter context, we dissected the
basal promoter of the CYP11A1 (SCC) gene. The
proximal promoter of the SCC gene contains the
TATA box, a weak Sp1-binding site [25], and the

Fig. 1. Diagram of the human CYP11A1 promoter region. The tran-

scription start site is denoted by an arrow. The TATA box and pro-

tein-binding sites are also shown.
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sequence which matches the SF1-binding site (Fig. 1).
Di�erent lengths of the SCC promoter was linked to a
CAT reporter gene for transfection into mouse adrenal
Y1 and human adrenal H295 cells (Fig. 2). The pattern
of CAT RNA expression in both cell lines was similar,
with a low but detectable level of transcription driven
by 34 bp of the SCC promoter. This transcription was
more prominent after 8-Br-cAMP stimulation. The
basal expression was enhanced when the SCC promo-
ter was increased to 55 bp, which includes the SF1-
binding site. Therefore, SF1 appeared to contribute to
basal transcription of the SCC gene. This basal ex-
pression became more prominent as the length of the
promoter was increased. This result indicated that the
basal promoter within 34 bp of the sequence was able
to direct cAMP-dependent transcription.

3.2. Function of the SCC promoter in nonsteroidogenic
cells

We have shown earlier that ferredoxin expression is
stimulated by cAMP only in steroidogenic cells [29].
Since P450scc is expressed only in steroidogenic cells,
we tested whether cAMP induction of the SCC gene is
also cell type-speci®c. Transcription driven by di�erent
lengths of the SCC promoter was assayed by transfec-
tion into non-steroidogenic cell line COS-1 (Fig. 3).
Co-transfection of the expression plasmid for SF1 was
required for the expression of the reporter gene,
demonstrating the requirement of SF1 for SCC basal
transcription. Co-transfection of the catalytic subunit
of the cAMP-dependent protein kinase (PKA), how-
ever, could not stimulate reporter gene expression con-
trolled by the SCC promoter, when it was 34, 55, 117,

or 145 bp long (Fig. 3). This failure of cAMP induc-
tion was not an experimental artifact, as the expression
of the CAT gene controlled by CRE (cAMP-respon-
sive element) linked to the TK promoter was strongly
enhanced by increasing concentrations of the PKA ex-
pression plasmid. Therefore the lack of cAMP induc-
tion in COS-1 cells indicated that the SCC promoter
responded to cAMP in a cell type-speci®c manner.

3.3. Requirement of the TATA sequence for cAMP
induction

Fig. 2 shows that 34 bp of the SCC promoter could
direct cAMP-dependent transcription. Since the only
important sequence in this short fragment appears to
be the TATA box, we mutated the TATA sequence of
the SCC promoter into that of RSV, which di�ers
from the SCC TATA by four nucleotides (Fig. 4).
RSV promoter does not respond to cAMP and are fre-
quently used as internal controls. As shown in Fig. 4,
while expression from pSCC117 was still stimulated by
8-Br-cAMP, the expression from 117RSV lost cAMP
response in H295 cells. Since the sequence of p117RSV
are identical to that of pSCC117 except the four
nucleotides in the TATA sequence, the lack of re-
sponse in p117RSV indicated that the TATA sequence
per se may be important for cAMP response.

4. Discussion

In this report, we have dissected the minimal promo-
ter of the human CYP11A1 gene. This minimal pro-
moter contains the SF1-binding site and the TATA

Fig. 2. Transcriptional activity of the CYP11A1 promoter with decreasing lengths of 5 '-¯anking sequence in Y1 and H295 cells. Test plasmids

containing di�erent lengths of the CYP11A1 promoter linked to the reporter gene CAT were co-transfected with an internal control plasmid

RSVCAT into H295 or Y1 cells. Results of primer extension from the CAT RNA are shown. Transcripts initiated from the SCC and the RSV

promoters are marked. Size markers are at the side of the gel.
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sequence. SF1 is a tissue-speci®c transcription factor
which regulates expression of many steroid hydroxyl-
ase genes [30,31]. We showed that by supplementing
COS-1 cells with SF1, the SCC promoter increased
greatly in strength. SF1, however, failed to restore
cAMP induction of the SCC gene in COS-1 cells. SF1
appears to augment the e�ect of the minimal promo-
ter.

While SF1 controls expression of the SCC gene in
the adrenal cell lines, it is absent in placental JEG-3
cells (our unpublished result). Being another steroido-
genic cell line, JEG-3 apparently uses a di�erent mech-
anism requiring no SF1 for the expression of SCC.
This is similar to the situation in neuronal cells which
also need no SF1 for SCC gene expression [15].

The minimal promoter with the TATA box of the

Fig. 3. Transfection of minimal promoter into COS-1 cells. Plasmids containing the CAT reporter gene under the control of 34, 55, 145, or 117

bp of the SCC promoter were co-transfected with internal control plasmid RSVCAT or RSV-b-gal in the presence or absence of expression plas-

mids for SF1 or the catalytic subunit of the cAMP-dependent protein kinase (PKA). Reporter gene expression was analyzed by (A) CAT activity

assay or (B) primer extension of CAT RNA.
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SCC gene su�ced for a low level of cAMP-dependent
transcription. This transcription is cell type-speci®c, as
the SCC promoter sequence does not respond to
cAMP in COS-1 cells (Fig. 3). TATA sequences di-

recting cell type-speci®c transcription have been
described in many genes, including those encoding
myoglobin [32], hsp70 [33], myelin basic protein [34],
and the pituitary-speci®c factor GHF1 [35]. For the
GHF1 gene, the TATA and its surrounding sequences
are both important determinants of cell type-speci®c
transcription [35]. The TATA sequence of the SCC
gene is functionally important because replacing the
SCC TATA sequence with RSV TATA abolished
cAMP response (Fig. 4). This, however, does not rule
out the possibility that sequences surrounding TATA
may also contribute to cAMP-dependent transcription
of the SCC gene.

What contributes to the speci®city of the TATA box
has been the focus of intensive studies. One possibility

is the preference of the upstream sequence-speci®c
transcription factors to interact with certain promoter
context to bring about speci®city. Some transcription
factors, ATF is one example, can sequester the core
promoter complex and its activity altered by changing
the TATA motif [36]. Another example is the well-
characterized muscle speci®city of the myoglobin and
the MyoD genes due to synergistic interaction between
various muscle-speci®c transcription factors and the
TATA sequence [37,38].

The other possibility is that cell type speci®c pro-
teins interacting directly with the TATA box for speci-
®city. That di�erent tissues contain functionally non-
equivalent TFIID activities has long been suggested
[34]. The best known proteins binding to TATA are
TBP (TATA-binding protein) and its associated pro-
teins TAF [39,40]. There are also other proteins
known to bind to AT-rich sequences [37]. The putative
TATA-binding protein could either be associated with
the TAF complex, or bind to DNA individually. All of
the proteins in the TAF complex characterized to date
are core components which are present ubiquitously
[41]. The tissue-speci®c TAF proteins have not been
characterized although their existence has been
suggested. It is likely that the TATA-binding proteins
present in a tissue-speci®c manner could play a role in
activating SCC gene transcription.
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